Principally Polarized Ordinary Abelian Varieties Over Finite Fields
نویسندگان
چکیده
منابع مشابه
Principally Polarized Ordinary Abelian Varieties over Finite Fields
Deligne has shown that there is an equivalence from the category of ordinary abelian varieties over a finite field A: to a category of Z-modules with additional structure. We translate several geometric notions, including that of a polarization, into Deligne's category of Z-modules. We use Deligne's equivalence to characterize the finite group schemes over k that occur as kernels of polarizatio...
متن کاملAbelian varieties over finite fields
A. Weil proved that the geometric Frobenius π = Fa of an abelian variety over a finite field with q = pa elements has absolute value √ q for every embedding. T. Honda and J. Tate showed that A 7→ πA gives a bijection between the set of isogeny classes of simple abelian varieties over Fq and the set of conjugacy classes of q-Weil numbers. Higher-dimensional varieties over finite fields, Summer s...
متن کاملPrincipally Polarizable Isogeny Classes of Abelian Surfaces over Finite Fields
Let A be an isogeny class of abelian surfaces over Fq with Weil polynomial x4+ax3+bx2+aqx+q2. We show that A does not contain a surface that has a principal polarization if and only if a2 − b = q and b < 0 and all prime divisors of b are congruent to 1 modulo 3.
متن کاملSupersingular Abelian Varieties over Finite Fields
Let A be a supersingular abelian variety defined over a finite field k. We give an approximate description of the structure of the group A(k) of k-rational points of A in terms of the characteristic polynomial f of the Frobenius endomorphism of A relative to k. Write f = > gi i for distinct monic irreducible polynomials gi and positive integers ei . We show that there is a group homomorphism .:...
متن کاملEndomorphisms of Abelian Varieties over Finite Fields
Almost all of the general facts about abelian varieties which we use without comment or refer to as "well known" are due to WEIL, and the references for them are [12] and [3]. Let k be a field, k its algebraic closure, and A an abelian variety defined over k, of dimension g. For each integer m > 1, let A m denote the group of elements aeA(k) such that ma=O. Let l be a prime number different fro...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Transactions of the American Mathematical Society
سال: 1995
ISSN: 0002-9947
DOI: 10.2307/2154828